Description

Solar panels are designed more and more thinking about their architectural integration. The solar pavement is a perfect solution, since they constitute a range of active technological glasses that have the property of generating electrical energy and can be used both in streets and on new roads as well as in renovations.

 

The architectural integration of the photovoltaic pavement makes it possible to create glazed surfaces that, in addition to being an aesthetic and functional novelty, generate electrical energy, allowing electrical autonomy with the consequent energy savings.

 

The photovoltaic flooring of Solar Innova can be installed in replacement of conventional pavement.

 

This type of solutions are perfect to be used in urban environments maintaining the aesthetic and respecting the historical value of the environment.

 

Our pavement meets all safety requirements, both flexibility, double insulation, or high resistance to UV rays, very long durability by not having elements that degrade in the face of weather and / or environmental conditions, for all these reasons. suitable for use in outdoor applications.

 Materials

Solar Innova uses the latest materials to manufacture photovoltaic modules:

 

Glass

The front of the module contains a tempered solar glass with high transparency with high transmissivity, low reflectivity and low iron content.

 

The glass forms the front end of photovoltaic module and protects components housed within the laminate from the weather and mechanical stresses.

 

At the same time serves as carrier material in the lamination process.

 

A high transmittance increases the efficiency of the photovoltaic cells and thus has a direct influence on the potency and performance of the final module. A low iron content in the glass composition and an antireflection coating to reduce absorption of radiant energy.

 

Achieve excellent resistance against mechanical stress and temperature changes due to preload producer.

Top Encapsulant

EVA (Ethyl Vinyl Acetate)

The sheets of EVA (Ethyl Vinyl Acetate) are used to connect the solar cells through the lamination process with glass surface. This step provides the "encapsulated" solar module that is responsible for holding together the photovoltaic module and have a decisive bearing on life. The degree of chained EVA sheet after the lamination process is decisive for the quality indicator of the solar module.

 

An EVA sheet must guarantee insulation and protective effect throughout the life of the module. The films of poor quality can cause long-term discoloration, delamination or decomposition and, therefore, strongly impair the performance capability of the module in question. Solar Innova uses only high quality sheet of chains with a degree exceeding 85 %, thus providing long lasting protection of cells.

PVB (Polyvinyl Butyral)

The sheets of PVB (Polyvinyl Butyral) are used to connect the solar cells through the lamination process with glass surface. This step provides the "encapsulated" solar module that is responsible for holding together the photovoltaic module and have a decisive bearing on life. The degree of chained PVB sheet after the lamination process is decisive for the quality indicator of the solar module.

 

An PVB sheet must guarantee insulation and protective effect throughout the life of the module. The films of poor quality can cause long-term discoloration, delamination or decomposition and, therefore, strongly impair the performance capability of the module in question. Solar Innova uses only high quality sheet of chains with a degree exceeding 85 %, thus providing long lasting protection of cells.

 

The PVB used as encapsulant meets the highest security requirements against breakage resistance offering a break of more than 20 N/mm2.

Ribbon

Welding ribbon is specially designed for manufacturing solar panels product. It is used for electrical connections between solar photovoltaics.

 

It is made with a flat copper tape, coated with a thin layer of tin (414-600 microinches) on all sides. Tin copper confers protection against oxidation and provides a layer for easy welding.

 

The welding of the cells is performed by a combination of heat and pressure welding the longitudinal straps. The tape reaches the factory coils are placed in the automatic welding machines.

 

The solder coating on the ribbon interconnect provides 100% of that needed to form a reliable metallurgical bond at the top of the welding cells.

Cells

Solar cells directly convert sunlight into direct current electrical energy and the generator are of the module. The quality of cells directly influences the characteristics of a solar module is therefore essential silicon composition used.

 

Solar Innova cells used exclusively Innova highly efficient with minimal variations in the process of optimizing the production reproducibility of the separation of cells. Is a determining factor for the quality of the cell constant for stable profits. The high resistance multipliers and fill factors used cells provide a good source of energy radiation especially low.

 

Each cell is checked, and classified electrically calibrated prior to interconnection to optimize the behavior of the module.

Back Encapsulant

EVA (Ethyl Vinyl Acetate)

The sheets of EVA (Ethyl Vinyl Acetate) are used to connect the solar cells through the lamination process with glass surface. This step provides the "encapsulated" solar module that is responsible for holding together the photovoltaic module and have a decisive bearing on life. The degree of chained EVA sheet after the lamination process is decisive for the quality indicator of the solar module.

 

An EVA sheet must guarantee insulation and protective effect throughout the life of the module. The films of poor quality can cause long-term discoloration, delamination or decomposition and, therefore, strongly impair the performance capability of the module in question. Solar Innova uses only high quality sheet of chains with a degree exceeding 85 %, thus providing long lasting protection of cells.

PVB (Polyvinyl Butyral)

The sheets of PVB (Polyvinyl Butyral) are used to connect the solar cells through the lamination process with glass surface. This step provides the "encapsulated" solar module that is responsible for holding together the photovoltaic module and have a decisive bearing on life. The degree of chained PVB sheet after the lamination process is decisive for the quality indicator of the solar module.

 

An PVB sheet must guarantee insulation and protective effect throughout the life of the module. The films of poor quality can cause long-term discoloration, delamination or decomposition and, therefore, strongly impair the performance capability of the module in question. Solar Innova uses only high quality sheet of chains with a degree exceeding 85 %, thus providing long lasting protection of cells.

 

The PVB used as encapsulant meets the highest security requirements against breakage resistance offering a break of more than 20 N/mm2.

Glass

The back of the module contains a tempered solar glass with high transparency, low reflectivity and low iron content.

 

The glass forms the back end of photovoltaic module and protects components housed within the laminate from the weather and mechanical stresses.

 

At the same time serves as carrier material in the lamination process.

 

Achieve excellent resistance against mechanical stress and temperature changes due to preload producer.

Junction Box

The primary function is to transmit the energy produced in the module.

 

The junction box installed is made high temperature resistant plastics. The box is sealed and ready for the weather. Has a degree IP-65, which provides the insulation system against moisture, inclement weather, dirt and ultraviolet radiation. Inside are installed bypass diodes.

 

Bypass diodes protect the tensile modulus increased and consequently the so-called hot spot effects.

 

The modules are supplied with box and bypass diodes integrated.

 

In each module there is a single box for both terminals. Polarity must be observed in the connections to the proper functioning of the modules.

 

The junction box can be opened in case of failure, thereby facilitating an eventual replacement of damaged diodes. Covers of junction boxes have an indicative drawing. They open by inserting a screwdriver in the appropriate tab in the direction of the arrow, with light pressure on it to open. To close the lid, simply press it to closure. The lid has a flange attached to the junction box while handling the interior thereof. This flange must not be cut at all.

 

The junction boxes should not suffer any pressure when installing the module on a support structure. No element of it should touch the box.

 

The junction boxes are similar to modules with the same voltage rating. All connection boxes are provided with symmetrical cables of length 900 mm. With a connector positive (+) and a negative connector (-) with a working temperature range between - 40 ~ + 85° C.

Diodes

The shading of a cell can cause a reverse voltage on it. This cell thus consume power generated by the other in series, resulting in undesirable heating of the shaded cell. This effect, called hot spot will be greater the higher the radiation incident on the rest of the smaller cells and cell receiving that due to the shadow. In an extreme case the cell may be broken due to overheating.

 

The use of protective diodes or by-pass reduces the risk of heating of the shaded cells, limiting the current that can flow through them and thus preventing the breakage thereof.

 

All modules with a number of cells greater than or equal to 33 connected in series, manufactured by Solar Innova, are provided with protection diodes that are located at the junction boxes. In modules with fewer cells in series are not required the bypass diodes, as the hot spot effect does not reach the level of risk of rupture of the cells.

 

The replacement of bypass diodes should be performed only by a qualified competent photovoltaic after disconnecting the system module.

Cables

Our modules are fitted with flexible cables, symmetrical in length, with a diameter of copper section of 4 mm, weather resistant and have been specially designed and certified for use in our modules. Have high values ​​of electrical safety and fire resistance. Its insulation to weathering and UV rays ensures longevity of the installation. Furthermore, the wide range of temperature allows its application even in extreme climatic areas, preventing heat aging and therefore allowing a long life in the photovoltaic system. They have a high strength and a very low contact resistance, all designed to obtain minimum voltage drop losses and allows them to continue operating even in unfavorable conditions.

 

All our photovoltaic modules are supplied with cable assemblies in the box with the following features:

  • Length: 900 mm.

  • Operating Temperature Range: - 40 ~ + 90° C.

Connectors

Our PV modules are equipped with connectors and sockets MC-T4 100 % compatible with the connectors and sockets used to connect electrical systems. Only MC-T4 connector or compatible and special solar cables may be used to lengthen the cables connected to the module. These must meet the electrical requirements of the Interconnection design.

 

All our photovoltaic modules are supplied with assembled connectors on cables with the following features:

  • Diameter: Ø 4 mm.

  • Maximum rated current: 30 A.

  • Maximum system voltage: 1000 V.

  • Plugged Protection level: IP-67.

  • Mounting: easy.

  • Locking system: Snap in.

  • Protection Class: II.

  • Operating Temperature Range: - 40 ~ + 90° C.

Sealed

PV modules require the use of silicone sealant high quality for bonding and sealing of junction boxes of photovoltaic modules.

 

Silicone has excellent adhesion to most substrates used in the manufacture of photovoltaic modules and does not lose its flexibility in a wide temperature range so it offers perfect protection against the ingress of water into the laminate.

 

Fabricated with high efficiency. No chemical reactions with EVA material and PVF film protector ensures the chemical stability.

 

The silicone is applied in the grooves of the frame and the edge of the laminate so as to prevent any infiltration of gas or liquid that can erode the module. At the same time, elasticity serves as a protection against possible mechanical impacts during installation or handling.

Labels

This document describes data sheet and nameplate information for non-concentrating photovoltaic modules. The intent is to provide minimum information required to configure a safe and optimal system with photovoltaic modules. In this context, data sheet information is a technical description separate from the photovoltaic module. The nameplate is a sign in durable construction in the photovoltaic module.

 

This document is used for identification and traceability at each stage of the production process as part of quality control.

 Production

Each photovoltaic module consists of a set of electrically interconnected solar cells, encapsulated together with other materials that make the whole resistant to atmospheric conditions, with a robust design and easy to install. The following briefly summarizes the main stages of the manufacturing process:

 

1.- Classification of Cells

All photovoltaic cells undergo classification and grouping based on their intrinsic characteristics: color, size, performance, etc.

2.- Cells welding

Once cells sorted and grouped according to their performance characteristics and voltage are welded the electrical terminals of each of the cells.

3.- Interconnection of Strings

The welding of the cells is one of the essential steps of the manufacturing process of a solar module.

 

Solder the solar cells into strings of cells (strings) is made by connecting the front of a cell with the back of the next cell by metal strips that collect and conduct the electricity through the string or chain of photovoltaic cells.

 

The cell welding machines to weld Solar Innova cells and different types of dimensions (height, thickness, number of bus bars, mono or polycrystalline silicon).

4.- Lay-up and Interconnection

In front tempered glass is placed avoiding the deterioration of the photoelectric cells.

 

Then place the protective sheet EVA with which encapsulate the front of the cells.

 

He proceeds to place strings sequentially all leaving the same space between each of them. Once all the strings they will be welded together.

 

Then placed next EVA protective sheet with which encapsulate the back of cells.

 

Finally place the protective sheet from the back of the laminate.

 

Inside each laminate visible tag is inserted at the front thereof, with a barcode containing a serial number traceable to the manufacturing date for identification.

 

5.- Visual Inspection

The sandwich is subjected to a severe visual inspection for any fault prior to lamination.

6.- Lamination

At this stage are sealed panels using heat and pressure in a vacuum laminator (hot oven) hermetically sealed. Laminate units through the use of vacuum pumps draw air chamber lamination, creating vacuum inside the module to obtain a continuous seal.

 

During the lamination process, the prepared 5 layer module is placed in the lamination machine and heated to maximum 135º C for a period of approximately 22 minutes. The laminate that comes out is completely sealed, and when produced well, will protect the solar cells for at least 25 years.

 

The product obtained is called laminate, to be buffed to remove excess materials (EVA and TPT) that have melted in the lamination beyond the outline.

7.- ELCD Test-1

All our laminates are subjected to a test to see if there electroluminescence breaks in cells or chains.

8.- Mounting Junction Box

We proceed to place a silicone seal around the junction box, then proceed to the installation of the junction box on the back of module.

9.- Cleaning

All modules are subject to a thorough clean to prevent dirt from sticking together.

10.- Dielectric Insulation Test

All our modules are introduced into a solar simulator to test them through a voltmeter is found that the current-voltage curve is the correct module.

Once the measurement modules are labeled on the rear part with a barcode containing a serial number traceable to the date of manufacture for identification.

 

11.- Flash Test

All our modules undergo a series of tests of high voltage insulation.

These tests are performed to ensure the insulation between the strings or strings and the module frame.

12.- Labeling

Subsequently placing an identifying label containing all the operational values ​​of the module.

13.- ELCD Test-2

All our modules are subjected to a test to see if there electroluminescence breaks in cells or chains.

14.- Packaging

Finally PV modules will be packaged so that no forces act that can cause breakage in its components.

 

  • 001
  • 002
  • 003
  • 004
  • 005
  • 006
  • 010
  • 011
  • 012
  • 013
  • 014
  • 015
  • 016
  • 017
  • 018
  • 019
  • 020
  • 021
  • 022

 Videos

Production-Welding-Cells-1

Production-Welding-Cells-2

Production-Welding-Cells-3

Production-Welding-Cells-4

Production-Welding-Cells-5

Production-Welding-Cells-6

Production-Positioning-Module

 Catalogues

 EN

Warning: No images in specified directory. Please check the directoy!

Debug: specified directory - https://www.solarinnova.net/images/stories/en/productos/fotovoltaica/modulos/bipv/pavimento/fotos

 ES

Warning: No images in specified directory. Please check the directoy!

Debug: specified directory - https://www.solarinnova.net/images/stories/es/productos/fotovoltaica/modulos/bipv/pavimento/fotos

 PT

Warning: No images in specified directory. Please check the directoy!

Debug: specified directory - https://www.solarinnova.net/images/stories/pt/productos/fotovoltaica/modulos/bipv/pavimento/fotos

 Downloads

Catalog

Packaging and Transport

Installation Guide

Declaration of Conformity CE

Guarantee

Skype-Call Skype-Add Skype-Chat Skype-Profile Skype-Voice  Skype-File

EU e-Privacy Directive

This website uses cookies to manage authentication, navigation, and other functions. By using our website, you agree that we can place these types of cookies on your device.

View Privacy Policy

View e-Privacy Directive Documents

You have declined cookies. This decision can be reversed.

You have allowed cookies to be placed on your computer. This decision can be reversed.